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Abstract

We present a pivoting algorithm for solving linear programswith linear complementarity constraints.
Our method generalizes the simplex method for linear programming to deal with complementarity con-
ditions. We develop an anticycling scheme that can verify Bouligand stationarity. We also give an
optimization-based technique to find an initial feasible vertex. Starting with a feasible vertex, our algo-
rithm always finds a minimizer or an unbounded descent searchdirection in a finite number of pivoting
steps.

1 Introduction

In the past decade, extensive efforts have been spent on mathematical programming with equilibrium con-
straints (MPEC). These research efforts center on constraint qualifications and stationarity conditions (Pang
and Fukushima, 1999; Scheel and Scholtes, 2000; Ye, 2005, 1999) and algorithms based on nonlinear pro-
gramming (NLP) techniques to obtain stationary points (Anitescu, 2005; Anitescu et al., 2007; Benson et al.,
2006; Facchinei et al., 1999; Fletcher and Leyffer, 2004; Fletcher et al., 2006; Fukushima and Tseng, 2002;
Hu and Ralph, 2004; Jiang and Ralph, 2000, 2004; Leyffer, 2005, 2006; Leyffer et al., 2006; Scholtes, 2001).

A common drawback of the NLP-based approach for MPECs is thatit can converge to spurious station-
ary points, such as C-stationary or M-stationary points, with trivial descent directions. Recently a robust
method for solving MPECs was proposed (Leyffer and Munson, 2007), based on sequentially solving a lin-
ear model of an MPEC, a linear program with linear complementarity constraints (LPCC). It motivates us
to investigate new techniques to solve LPCCs.

LPCC is closely related to bilevel linear programming and mixed-integer programming. Indeed an
LPCC is always transformable to a mixed-integer program, and sometimes transformable to a bilevel linear
program. Several works exploit the connections in order to develop new methods. Examples include cutting
plane (Hu et al., 2008; Ibaraki, 1971, 1973) and branch-and-bound methods (Audet et al., 1997, 2007;
Hansen et al., 1992). Both approaches are based on mixed-integer programming. In addition, a penalty
method was also proposed byÖnal (1993) and analyzed by Campêlo and Scheimberg (2000).
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Rather than transforming the LPCC into another type of program, we consider the LPCC itself. We
develop a pivoting algorithm that can handle linear complementarity constraints, based on the classical sim-
plex method for linear programming. Our algorithm includesan optimization-based initialization method
and an anticycling scheme. In addition, certain well-established techniques for the simplex method, such
as steepest-edge search (Goldfarb and Reid, 1977; Stange etal., 2007) and low-rank modification of LU
factorization for active-set updates (Bartels and Golub, 1969a,b; Fletcher and Matthews, 1984; Stange et al.,
2007), can be used in our algorithm to improve its efficiency.

This rest of the paper is organized as follows. Section 2 reviews the stationarity conditions for LPCCs.
Section 3 gives a generalized pivoting algorithm for LPCC under a nondegeneracy assumption. Section 4
extends the capability of our algorithm to work under degeneracy. Section 5 gives a scheme to break pivoting
cycles due to degeneracy and nonstrict complementarity conditions. This anticycling scheme can also prove
Bouligand stationarity. Our algorithm requires an initialfeasible vertex to start, and Section 6 presents an
optimization-based method to find such an initial vertex. Section 7 reports some numerical results.

2 Stationarity Conditions for LPCC

In this section we briefly review optimality conditions for LPCCs. We consider the LPCC



























minimize
x

gT x

subject to aT
i x ≥ bi , i = 1, . . . ,m

0 ≤ (aT
i x− bi) ⊥ (aT

p+i x− bp+i ) ≥ 0, i = m+1, . . . ,m+p,

(2.1)

wherex ∈ Rn. The notationy ⊥ z means thaty andz are orthogonal; that is,yTz = 0 for vectors, or simply
yz = 0 for real values. Without loss of generality, we have reordered the inequalities such that the last 2p
inequalities are in thep complementary conditions. We call inequalitiesaT

i x ≥ bi standardconstraints for
i = 1, . . . ,mandcomplementarityconstraints fori = m+1, . . . ,m+2p.

Our method is readily extended to more general forms of linear constraints, such as equality constraints,
range constraints, or mixed complementarity conditions. We have chosen the format in (2.1) mainly to
simplify the presentation.

For an indexi of a complementarity constraint, we definec(i) to be the index of the constraint to which
it is complementary. That is,

c(i) =























NULL, if i ≤ m;
i+p, if m+1 ≤ i ≤ m+p;
i−p, if m+p+1 ≤ i ≤ m+2p.

(2.2)

A point is calledlinear feasibleif it satisfies the linear inequalities

aT
i x ≥ bi , i = 1, . . . ,m+2p. (2.3)

A point is calledcomplementaryif it satisfies the complementarity conditions

(aT
i x−bi)(a

T
c(i)x−bc(i)) = 0, i = m+1, . . . ,m+p. (2.4)

A point is calledfeasibleif it is complementary and linear feasible, that is, satisfying all the constraints in
(2.1).
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Several stationarity concepts for optimization problems with equilibrium or complementarity constraints
have been proposed. We briefly review the strong- and Bouligand-stationarity conditions for LPCCs.
Other stationarity concepts such as A-, C-, L-, or M-stationarity (Hoheisel and Kanzow, 2009; Pang and
Fukushima, 1999; Scheel and Scholtes, 2000; Ye, 2005, 1999)include trivial descent directions and there-
fore are not of interest.

We call a complementarity condition (aT
i x− bi) ⊥ (aT

c(i)x− bc(i)) nonstrictat x̂ if aT
i x̂ = bi andaT

c(i) x̂ =
bc(i) (Scholtes, 2001). It is also sometimes called a degenerate or lower-level degenerate complementarity
condition. We denote the index set of nonstrict complementarity conditions by

D(x̂) =
{

i : aT
i x̂ = bT

i ∧ aT
c(i) x̂ = bc(i), i = m+1, . . . ,m+p

}

. (2.5)

Definition 2.1 A feasible point̂x of (2.1) is called strongly stationary if there exist multipliers y1, . . . , ym+2p,
such that



















































g−
m+2p
∑

i=1

yi(a
T
i x̂− bi) = 0,

0 ≤ (aT
i x̂− bi) ⊥ yi ≥ 0, ∀i ∈ {1, . . . ,m};

aT
i x̂ > bi ⇒ yi = 0, ∀i ∈ {m+1, . . . ,m+2p};

yi ≥ 0∧ yc(i) ≥ 0, ∀i ∈ D(x̂).

(2.6)

If we relax the condition (aT
j x̂ − b j) ⊥ (aT

c( j) x̂ − bc( j)) for j ∈ D(x̂) at a feasible point ˆx, then in a
neighborhood of ˆx, the LPCC problem (2.1) is reduced to an LP problem. If ˆx also solves this LP, then
KKT conditions of this LP are equivalent to the strong stationarity conditions defined in Definition 2.1.
Therefore, a strongly stationary point of LPCC (2.1) is a local minimizer, but not vice versa. Next, we
review a necessary and sufficient condition for stationarity.

A Bouligand-stationary or B-stationarypoint is a point at which no linearized feasible stationary de-
scend directions exist (Scheel and Scholtes, 2000). An equivalent, more convenient definition is given next.

Definition 2.2 Given a feasible point̂x of (2.1) and a subset of nonstrict complementarity conditionsP ⊆
D(x̂), the LP piece LP(x̂,P) is defined by tightening the nonstrict complementarity conditions:































































minimize
x

gT x

subject to aT
i x ≥ bi , ∀i ∈ {1, . . . ,m};

aT
i x = bi and aT

c(i)x ≥ bc(i), ∀i ∈ {m+1, . . . ,m+p} \ D(x̂) and aT
i x̂ = bi ;

aT
i x ≥ bi and aT

c(i)x = bc(i), ∀i ∈ {m+1, . . . ,m+p} \ D(x̂) and aT
c(i) x̂ = bc(i);

aT
i x = bi and aT

c(i)x ≥ bc(i), ∀i ∈ P;

aT
i x ≥ bi and aT

c(i)x = bc(i), ∀i ∈ D(x̂) \ P.

(2.7)

Definition 2.3 We call x̂ a B-stationary point if and only if̂x is a minimizer of all LP pieces LP(x̂,P) for
P ⊆ D(x̂).

Remark 2.1 An equivalent statement in terms of multipliers is that for all P ⊆ D(x̂) there exist multipliers
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y1, . . . , ym+2p, such that































































g−
m+2p
∑

i=1

yi(a
T
i x̂− bi ) = 0,

0 ≤ (aT
i x̂− bi) ⊥ yi ≥ 0, ∀i ∈ {1, . . . ,m};

aT
i x̂ > bi ⇒ yi = 0, ∀i ∈ {m+1, . . . ,m+2p} \ D(x̂);

yc(i) ≥ 0, ∀i ∈ P;
yi ≥ 0, ∀i ∈ D(x̂) \ P

(2.8)

holds.

In general, strong stationarity implies B-stationarity, but not vice versa. However, when all complemen-
tarity constraints are strict, then strong stationarity and B-stationarity are equivalent.

Scheel and Scholtes (2000, page 8) give an example where a vertex is B-stationary but not strongly
stationary:







































minimize
x1,x2,x3

x1 + x2 − x3

subject to 4x1 − x3 ≥ 0, indexed by 1;
4x2 − x3 ≥ 0, indexed by 2;
0 ≤ x1 ⊥ x2 ≥ 0, indexed by 3 and 4.

(2.9)

The only feasible vertex of (2.9) is (0, 0, 0). By Definition 2.1, strong stationarity requires that there exist
nonnegative multipliersy1, y2, y3, y4 satisfying
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4 0 1 0
0 4 0 1
−1 −1 0 0
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. (2.10)

Adding 4y1+y3 = 1 and 4y2+y4 = 1 minus four timesy1+y2 = 1, we obtainy3+y4 = −2, which contradicts
y3 ≥ 0 andy4 ≥ 0. Thus, (0, 0, 0) is not strongly stationary.

To prove B-stationarity, we observe that the two LP pieces of(2.9) correspond tox1 = 0 ≤ x2 and
x1 ≥ 0 = x2. Using (2.10), we obtain the multipliers (3

4,
1
4,−2, 0) and (14,

3
4, 0,−2) for the two LP pieces.

Thus, (0, 0, 0) is B-stationary.

3 Pivoting under Nondegeneracy

Our algorithm generalizes the active-set method for LP to LPCC. The algorithm starts at a feasible vertex
x̂ and moves from one vertex to another along a feasible edge to reducegT x. For ease of presentation, we
make the following two assumptions.

1. There are exactlyn linearly independent active constraints at every vertex.

2. An initial feasible vertex is given and associated withn linearly independent active constraints.

The first assumption is a general nondegeneracy assumption,and we show in Sections 4 and 5 how to
remove it, by extending the working set and developing a suitable anticycling scheme for LPCC. The second
assumption can be removed by a two-phase process, which we describe in Section 6.
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A vertex x̂ of LPCC (2.1) is determined by a working set ofn active linearly independent constraints,
whose indices form a set denoted byW. Under the nondegeneracy assumption, all active constraints are
in the working setW. To satisfy the complementarity condition in (2.1), we needthe following additional
condition:

{i, c(i)} ∩W , ∅, ∀i ∈ {m+1, . . . ,m+p}, (3.1)

wherec(i), defined in (2.2), is the index of the other complementarityconstraint of constrainti. Condition
(3.1) ensures that at least one constraint in each complementarity condition is active. For ease of presenta-
tion, we partitionW intoW0 andW1:

W0 =W∩ {1, . . . ,m}, W1 =W∩ {m+1, . . . ,m+2p}, (3.2)

whereW0 andW1 contain the standard and complementarity constraints fromW, respectively.
We note that we have assumed nondegeneracy but not strictness of complementarity conditions. In

other words, two constraints in a complementarity condition can be in the working set at the same time:
{ j, c( j)} ⊆ W for some j ∈ {m+1, . . . ,m+p}.

Aggregating all constraints in the working setW, we obtain a linear systemAT x = b, whereA = [a j ] j∈W

andb = [b j ] j∈W. The Lagrangian of (2.1) is

L(x, y) = cT x− yT(AT x− b).

The vertex ˆx determined by the working setW is A−Tb. Setting∂L/∂x = 0, we obtain the multipliers
ŷ ≡ [ŷ j ] j∈W := A−1g. Moving from one vertex to another along a feasible edge implies replacing one entry
in the working setW by another, andA = [a j ] j∈W andb = [b j ] j∈W will be updated accordingly. In practice,
we do not formA−1 but work with numerically stable LU factors. Since only one column ofA is changed at
each pivoting step, we can apply a rank-one update to the LU factors for computational efficiency (Bartels
and Golub, 1969a,b; Fletcher and Matthews, 1984; Stange et al., 2007).

We denoteA−T = [sj] j∈W. Moving from the vertex ˆx = A−Tb along the directionsj increasesaT
j x j,

so the constraintaT
j x j > b j becomes inactive, while the other equations inAT x = b remain satisfied. The

directionsj is associated with the edge formed byAT x = b after removingaT
j x = b j . The rate of change of

the objective function when moving from ˆx to x̂+ sj is given by the multiplier ˆy j = sT
j g. Therefore,sj is a

descent direction if and only if ˆy j < 0.
Now we discuss whether moving alongsj from a feasible vertex ˆx will violate the complementarity

conditions (2.4). We have assumed that at least one constraint in each complementarity condition is in
the working set. Therefore, if constraintj ∈ W0 (i.e., standard) the directionsj does not violate (2.4).
Otherwise, j ∈ W1 is complementary. Under the nondegeneracy assumption, thedirection sj does not
violate (2.4) if and only if constraintc( j) is in the working set. Thus, we may choose to drop any constraint
from the following set of eligible constraints:

{

i : ŷi < 0∧ (i ∈ W0 ∨ (i ∈ W1 ∧ c(i) ∈ W1))
}

.

In our implementation we choose to drop the constraint with the most negative multiplier. In other words,

ŷq = min
{

0, ŷi : i ∈ W0 ∨ (i ∈ W1 ∧ c(i) ∈ W1))
}

,

whereq is the constraint index of the minimizer. As Lemma 3.1 will show, if ŷq = 0, then vertex ˆx is strongly
stationary. Otherwise,sq is the descent search direction associated with the leavingconstraintq.
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We also need to maintain linear feasibility (2.3). When moving along the directionsq, an inactive
constrainta j x ≥ b j can become active only ifaT

j sq less than 0. To be precise, letα j ≥ 0 be the step length
to satisfy the inequalityj not in working set. Thus,aT

j (x̂+ α j sq) − b j ≥ 0 impliesα j ≤ (b j − aT
j x̂)/aT

j sq if
aT

j sq < 0. We conclude that while moving alongsq, the maximal step length ˆαr to satisfy all inequalities is

min















b j − aT
j x̂

aT
j sq

: aT
j sq < 0, j <W















, (3.3)

wherer is the index minimizer indicating the entering constraint.We call (3.3) theratio test.
If aT

j sq ≥ 0 for all inequalities j not in the working set, there exists no stopping constraint,and the
directionsq is unbounded. In this case we let ˆαr be∞, and we conclude that the LPCC is unbounded.

When the leaving constraintq and entering constraintr are determined, we remove constraintq from
the working set, add constraintr (i.e.,W :=W∪ {r} \ {q}), and updateA = [a j ] j∈W andb = [b j ] j∈W. This
discussion is summarized in Algorithm 1.

1: ∥ Given vertex ˆx associated with a working setW satisfying (3.1).
2: FormA := [a j ] j∈W andb := [b j ] j∈W.
3: repeat
4: Compute current vertex ˆx := A−Tb.
5: Compute multipliers ˆy ≡ [ŷi ] i∈W := A−1g.
6: Compute ˆyq := min

{

0, ŷi : i ∈ W0 ∨ (i ∈ W1 ∧ c(i) ∈ W1))
}

.
7: ∥ The indexq indicates the constraint to leave the working set.
8: if ŷq = 0 then
9: return: x̂ is a strongly stationary point.

10: else
11: Compute search directionsq as the column ofA−T corresponding to ˆyq.

12: Perform the ratio test: ˆαr := min
j<W

aT
j sq<0















b j − aT
j x̂

aT
j sq

,∞















.

13: ∥ The indexr indicates the constraint to enter the working set.
14: if α̂r = ∞ then
15: return: the LPCC is unbounded.
16: else
17: UpdateW :=W∪ {r} \ {q}, A := [a j ] j∈W, andb := [b j ] j∈W.
18: end if
19: end if
20: until x̂ is strongly stationary or ˆαr = ∞.

Algorithm 1: A generalized pivoting algorithm for LPCC (2.1).

Consider Algorithm 1. Under the assumption of nondegeneracy, we can always move downhill with
α̂r > 0 to another vertex, until no decrease is possible and a solution is found, or until the LPCC is determined
unbounded. Since only a finite number of vertices exist, Algorithm 1 always terminates in a finite number
of steps.

Lemma 3.1 If Algorithm 1 terminates witĥyq = 0, then the final vertex̂x is strongly stationary.
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Proof All constraints not in the working setW are associated with zero multipliers. Since ˆyq = 0, we have
ŷ(0) ≥ 0, which implies that the first three conditions of (2.6) are satisfied. For the last condition, ˆy(1) ≥ 0
guarantees that the inequalities in the nonstrict complementarity conditions have nonnegative multipliers, so
all conditions for strong stationarity in Definition 2.1 aremet.

Lemma 3.2 A nondegenerate B-stationary point of an LPCC is also strongly stationary.

Proof See Scheel and Scholtes (2000, Theorem 2).

Now we illustrate the application of Algorithm 1 using the following example:











































































minimize
x1,x2,x3,x4,x5

4x1 − 2x2 + x3 − x5

subject to x1 ≥ 0, x2 ≥ 0, indexed by 1,2;
x1 + 2x4 ≥ 2, indexed by 3;
x3 − x4 − x5 ≥ −2, indexed by 4;
0 ≤ x3 ⊥ x1 − x2 + x3 + 1 ≥ 0, indexed by 5 and 8;
0 ≤ x4 ⊥ x1 − x3 + 2 ≥ 0, indexed by 6 and 9;
0 ≤ x5 ⊥ x3 − x4 + 1 ≥ 0, indexed by 7 and 10.

(3.4)

The first pivoting step: As will be seen in Section 6, our initialization scheme finds afeasible vertex
x̂ = (2, 0, 0, 0, 0) associated with the working setW = {2, 3, 5, 6, 7}. The objective isgT x̂ = 8. The
multipliers ŷ ≡ [ŷ j ] j∈W = A−1g are
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ŷ5

ŷ6

ŷ7
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4
1
−8
−1















































.

The most negative multiplier is ˆy6 = −8, associated with constraint 6, which is, however, complementary.
The other complement, indexed by 9, is inactive and not in theworking set. Thus, we cannot remove this
constraint from the working set. The second most negative multiplier is ŷ2 = −2, and constraintq = 2 will
leave the basis. The ratio test shows thataT

8 sq < 0, and constraintr = 8 will enter the basis.

The second pivoting step: Now the vertex associated with the working setW = {3, 5, 6, 7, 8} is x̂ =
(2, 3, 0, 0, 0). The objective isgT x̂ = 2, and the multipliers are (ˆy3, ŷ5, ŷ6, ŷ7, ŷ8) = (2,−1,−4,−1, 2). There
are three negative multipliers: ˆy5 = −1, ŷ6 = −4, andŷ7 = −1. The complementarity constraints 6 and 7
cannot leave the working set, since their other complementsare inactive and not in the working set. The
leaving constraint isq = 5. The ratio test (3.3) determines the entering constraintr = 9.

The third pivoting step: We are now at vertex ˆx = (2, 7, 4, 0, 0), determined by the working setW =

{3, 6, 7, 8, 9}. The objective isgT x̂ = −2. The multipliers are (ˆy3, ŷ6, ŷ7, ŷ8, ŷ9) = (1,−2,−1, 2, 1). There are
two negative multipliers, ˆy6 = −2 andŷ7 = −1. As before, the complementarity constraint 7 cannot leave
the working setW. The leaving constraint isq = 6. The ratio test (3.3) determines the entering constraint
r = 1.



8 Haw-ren Fang, Sven Leyffer, and Todd S. Munson

The result: Now the multipliers associated with working setW = {1, 3, 7, 8, 9} are (ŷ1, ŷ3, ŷ7, ŷ8, ŷ9) =
(1, 0,−1, 2, 1) The only negative multiplier ˆy7 = −1 is associated with the complementarity constraint 7,
which cannot leave the working set since the other complement, indexed by 10, is inactive and not in
working setW. Therefore, Algorithm 1 terminates at ˆx = (0, 3, 2, 1, 0), which is strongly stationary. The
final objective isgT x̂ = −4.

4 Pivoting under Degeneracy

In this section we extend Algorithm 1 by allowing degeneratevertices. The complementarity constraints
that can leave the working set are

C = {i : i ∈ W1 ∧ c(i) ∈ W1}.

In other words, under the nondegeneracy assumption, complementarity constrainti can leave the working
set without violating (2.4) if constraintc(i) remains in the working set. However, at a degenerate vertexx̂,
we must also take complementarity constrainti into account, if constraintc(i) is active but not in the working
set. Otherwise, Lemma 3.1 is no longer valid. Therefore, we extend the candidate setC by including all
active complementarity constraints to

C̄ = {i : i ∈ W1 ∧ aT
c(i) x̂ = bc(i)}.

Another issue arises if complementarity constraintq ∈ C̄ \ C leaves and constraintc(q) is not in the
working setW, because in this case, (aT

q x− bq) ⊥ (aT
c(q)x− bc(q)) may be violated after the pivot. A naive

solution is that wheneverq ∈ C̄ \ C leaves the working set, we immediately addc(q) into the working set,
that is, updateW := W ∪ {q} \ {c(q)}. The pitfall is that the resulting working matrixA = [ai ] i∈W may
become singular.

For example, consider the LPCC



















































minimize
x1,x2,x3

−x1

subject to x1 − x2 + x3 ≥ 0, indexed by 1;
x1 + x2 + x3 ≥ 0, indexed by 2;
−x1 ≥ −1, indexed by 3;
0 ≤ x1 ⊥ x2 ≥ 0, indexed by 4 and 5.

(4.1)

Say we are at vertex ( ˆx1, x̂2, x̂3) = (0, 0, 0), associated with the initial working setW = {1, 2, 4}. The
associated working matrixA = [a j ] j∈W, the objective normalg, and the multipliers ˆy := A−1g are

A =

























1 1 1
−1 1 0
1 1 0

























, g =
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0
0
−1

























. (4.2)

The only negative multiplier is ˆy3 = −1, associated with the leaving constraintx1 ≥ 0. The other comple-
mentarity constraintx2 ≥ 0 is active but not in the working setW. To maintain 0≤ x1 ⊥ x2 ≥ 0, we add

constraint 5 into the working set, givingW = {1, 2, 5}. The updated working matrixA =

























1 1 0
−1 1 1
1 1 0

























is

singular.
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To deal with degeneracy in LPCC, we introduce the concept ofextendedworking set:

W̄ =W∪E, W∩E = ∅,

where the setE is an extension. All constraints in̄W are active at the current vertex ˆx. While we still
maintain the working setW consisting ofn linearly independent active constraints, the extensionE contains
the complementarity constraints that should be kept activeto satisfy (2.4). Thus, condition (3.1) is relaxed
to

{i, c(i)} ∩ W̄ , ∅ for i = m+1, . . . ,m+p. (4.3)

The high level description of the revised algorithm is as follows. If the leaving constraintq is comple-
mentary andc(q) is not in the extended working set̄W = W ∪ E, then we addc(q) to E. To determine
the entering constraint, if a positive step length violatesany constraintr ∈ E, we mover from E toW
right away. Otherwise, we proceed with the usual ratio test (3.3) to determine the entering constraintr, and
removec(r) from E if c(r) ∈ E. More details are given in Algorithm 2.

Five remarks on Algorithm 2 must be made:

1. Lemma 3.1 remains valid. If the algorithm terminates withŷq = 0, then the final vertex ˆx is strongly
stationary.

2. At the end of each pivoting step, we keep all constraints inW̄ active and maintain (4.3) so that at least
one constraint in each complementarity condition is inW̄. Therefore, the vertices visited are always
feasible.

Note that, in line 17 of Algorithm 2,aT
r sq , 0 for somer ∈ E means that moving alongsq will make

constraintr inactive. So we mover from E intoW immediately, in which case the resulting vertex ˆx
is unchanged, and therefore the other constraints inE, if any, remain active.

3. A = [a j ] j∈W is always guaranteed to be nonsingular. The reason is that nomatter which entering
constraintr is chosen in line 17 of Algorithm 2 or in the ratio test in line 20, we haveaT

r sq , 0.

4. Here and throughout this paper, our extension setE contains only complementarity constraints of
(2.1), namely,∀i ∈ E, i > m. Under a nondegeneracy assumption,E = ∅ and Algorithm 2 coincides
with Algorithm 1.

5. We may impose the following condition,

∀ j ∈ E, c( j) < W̄, (4.4)

to exclude unnecessary complementarity constraints fromE and therefore potentially reduce the num-
ber of pivoting steps. If the initial extended working set satisfies (4.4), then (4.4) remains satisfied in
lines 37–39.

Now we apply Algorithm 2 to the LPCC (4.1). Let the initial working setW be {1, 2, 4} with zero
extensionE = ∅ that determines the initial vertex ( ˆx1, x̂2, x̂3) = (0, 0, 0). Condition (4.3) is satisfied. From
(4.2) we conclude that the leaving constraintq is 3, associated with the only negative multiplier ˆyq = −1.
The descent directionsq is (1, 0,−1), the last column ofA−T . Because the other complementarity constraint
c(q) = 4 < W ∪ E, we add it toE and haveE = {5}. At the test in lines 13–15, constraint 5 fromE has
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1: ∥ Given vertex ˆx associated with an extended working setW̄ =W∪E satisfying (4.3).
2: ∥ All constraints inW̄ are active at ˆx, andW consists ofn linearly independent constraints.
3: A1 := ∅;A2 := ∅.
4: FormA := [a j ] j∈W andb := [b j ] j∈W.
5: repeat
6: Compute current vertex ˆx := A−Tb.
7: Compute multipliers ˆy ≡ [ŷi ] i∈W := A−1g.
8: Compute ˆyq := min

{

0, ŷi : i ∈ W0 ∨ (i ∈ W1 ∧ c(i) ∈ W1))
}

.
9: ∥ The indexq indicates the constraint to quit the working set.

10: if ŷq = 0 then
11: return: x̂ is strongly stationary.
12: else
13: if q ∈ W1 andc(q) < W̄ then
14: E := E ∪ {c(q)}
15: end if
16: Compute search directionsq as the column ofA−T corresponding to ˆyq.
17: if ∃r ∈ E such thataT

r sq , 0 then
18: E := E \ {r}
19: else∥ The indexr indicates the constraint to enter the working set.

20: Ratio test: ˆαr := min
j<W̄

aT
j sq<0















b j − aT
j x̂

aT
j sq

,∞















.

21: if α̂r = ∞ then
22: return: the LPCC is unbounded.
23: end if
24: end if
25: (cycle,A1,A2) =DC(q, r, α̂r ,A1,A2);
26: if cycle = true then
27: (status,W,E) = AC(W,E);
28: if status = B stationary then
29: return: x̂ is B-stationary.
30: else ifstatus = unbounded then
31: return: the LPCC is unbounded.
32: else∥ status = cycle breaks
33: UpdateA := [a j ] j∈W, andb := [b j ] j∈W.
34: end if
35: else
36: UpdateW :=W∪ {r} \ {q}, A := [a j ] j∈W, andb := [b j ] j∈W.
37: if c(r) ∈ E then
38: E := E \ {c(r)}
39: end if
40: end if
41: end if
42: until x̂ is strongly stationary or B-stationary, or ˆαr = ∞.

Algorithm 2: A revised pivoting algorithm for LPCC (2.1).
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gradienta4 = (0, 1, 0). SinceaT
4 sq = 0, it cannot be the entering constraint. The entering constraint is

−x1 ≥ −1, determined by ratio test in line 20. The updated working set isW = {1, 2, 3} and the vertex is
x̂ = (1, 0,−1). The multipliers (ˆy1, ŷ2, ŷ3) = (0, 0, 1) are all nonnegative. As a result, the vertex ˆx = (1, 0,−1)
is strongly stationary.

Another problem caused by degeneracy is the fact that pivoting may cycle. We will address this issue in
the next section.

5 Anticycling for LPCC

At a degenerate vertex ˆx, the step length ˆαr can be zero, and we call such a pivoting stepdegenerate. If the
degenerate pivoting steps form a cycle, it loops indefinitely. In particular, Algorithm 2, without anticycling,
can terminate only at a strongly stationary point or by finding an unbounded search direction. Therefore, at a
B-stationary point that is not strongly stationary, it mustloop forever. For example, if we apply Algorithm 2
to the program (2.9) whose only vertex is B-stationary but not strongly stationary, then the step length is
always zero, resulting in an infinite loop.

At each pivoting step in our algorithm, we may have multiple choices of leaving constraint and entering
constraint. In LP, we can use Bland’s rule (Chvátal, 1983, Theorem 3.3); (Gill et al., 1990, Theorem 8.3.1)
to resolve degeneracy. Unfortunately, simply applying Bland’s rule to Algorithm 2 for LPCCs can still result
in a cycle. Even worse, without anticycling, Algorithm 2 cannot determine any B-stationary point that is not
strongly stationary. We illustrate the failure of Bland’s rule with the following example.











































































minimize
x1,x2,x3

x1 + x2 + x3 + x4 − x5 − x6

subject to 4x1 − x5 ≥ 0, indexed by 1;
4x2 − x5 ≥ 0, indexed by 2;
4x3 − x6 ≥ 0, indexed by 3;
4x4 − x6 ≥ 0, indexed by 4;
0 ≤ x1 ⊥ x2 ≥ 0, indexed by 5 and 6;
0 ≤ x3 ⊥ x4 ≥ 0, indexed by 7 and 8.

(5.1)

The only feasible vertex is (0, 0, 0, 0, 0, 0). Let the initial working setW be{1, 2, 3, 4, 5, 7}. The multipliers
(ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ7) are (34 ,

1
4,

3
4,

1
4,−2,−2). By Bland’s rule, the leaving constraint isx1 ≥ 0. The entering

constraint isx2 ≥ 0, resulting in working setW = {1, 2, 3, 4, 6, 7}. The multipliers (ˆy1, ŷ2, ŷ3, ŷ4, ŷ6, ŷ7) are
(1

4,
3
4,

3
4,

1
4,−2,−2). Now the leaving and entering constraints arex2 ≥ 0 andx1 ≥ 0. That forms cycling.

To resolve degeneracy for LPCCs, we require two routines: a cycle detection routine and an anticycling
routine. We adopt a cycle detection from Chvátal (1983). Wekeep an array of leaving constraintsA1 and
another array of entering constraintsA2. When the lastk entries ofA1 andA2 match each other for some
k, cycling is detected. Note that whenever a step length is positive (i.e., α̂r > 0), a cycle breaks, and we reset
A1 andA2 to be empty. The description is stated in pseudo-code in Algorithm 3.

Definition 2.3 shows how to determine whether a given vertex ˆx is B-stationary when nonstrict comple-
mentarity conditions are present. When a cycling at ˆx is detected, we consider the LP pieces LP( ˆx,P) for all
possibleP ⊆ D(x̂). We apply an anticycling rule, such as Bland’s least index rule, to each LP( ˆx,P). Then
it follows that x̂ is B-stationary if and only if ˆx is a minimizer to LP( ˆx,P) for all P ⊆ D(x̂). Otherwise, we
can find a descent direction from some LP piece to leave the vertex x̂.

The naive approach just described can be improved by the following observation. Applying Bland’s rule
to LP(x̂,P) for someP ⊆ D(x̂), assume that we obtain a set of multipliers ˆyi that satisfies (2.8) and therefore
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1: function [cycle,A1,A2] = CD(q, r, α̂r ,A1,A2)
2: ∥A1 andA2 are arrays containing the recent leaving and entering constraints.
3: ∥ q andr are the leaving and entering constraints; ˆαr is the step length.
4: if α̂r > 0 then
5: ∥ The objective of (2.1) is reduced, so previous steps cannot trigger a cycling.
6: cycle := false
7: else
8: Updatel := size(A1),A1(l) := q, andA2(l) := r.
9: if there existsk such thatA1(l−k+1, . . . , l) andA2(l−k+1, . . . , l) form the same setthen

10: ∥ Cycling is detected.
11: cycle := true
12: else
13: cycle := false
14: end if
15: end if
16: end function

Algorithm 3: Cycle detection for Algorithm 2.

x̂ is a solution to LP( ˆx,P). If for somei ∈ P we have ˆyi ≥ 0 in addition toŷc(i) ≥ 0, thenx̂ is also a solution
to LP(x̂,P \ {i}). In general, given a set of multipliers satisfying (2.8) atx̂, we let

R1 = {i : ŷi ≥ 0∧ i ∈ P}, R2 = {i : ŷc(i) ≥ 0∧ i ∈ D(x̂) \ P}, (5.2)

be the index sets corresponding to strongly stationary components. Then, ˆx is a solution to all the LP pieces

LP(x̂,P ∪ S2 \ S1) for all S1 ⊆ R1, S2 ⊆ R2. (5.3)

This observation indicates that a set of multipliers can be used to detect the optimality of multiple LP pieces
in Definition 2.3.

A simplistic implementation of our anticycling scheme is asfollows. We setU equal to 2D(x̂) and
removeP fromU whenever ˆx is verified as a minimizer of LP( ˆx,P). The process repeats untilU = ∅, in
which case ˆx is a B-stationary point, or until we find a descent search direction to leave ˆx, in which case the
cycle of pivoting breaks. The pseudo-code is given in Algorithm 4.

The condition (4.3) must still be satisfied during anticycling by Algorithm 4. This condition has impli-
cations for the two cases:

1. For each strict complementary condition, one constrainti is active and has been in the extended
working set, that is,i ∈ W̄ = W ∪ E. This active constraint cannot move away from̄W, but it
may move fromE toW. The other complementarity constraintc(i) is inactive and therefore is not
in the extended working set, that is,c(i) < W̄. Hence, we can ignore these strict complements when
determining the leaving constraints.

2. For each nonstrict complementary condition, one complementarity constraint is treated as an equality
and the other is treated as an inequality, with respect to LP(x̂,P) in each inner loop. Those treated as
equalities must be in̄W. In other words,

P ∪ Pc ⊆ W̄, Pc = {c(i) : i ∈ D(x̂) \ P}. (5.4)
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1: function [status,W, E] = A(W, E)
2: ∥ The current vertex is ˆx, associated with an extended working setW̄ =W∪E.
3: SetU := 2D(x̂), whereD(x̂) = {i : aT

i x̂ = bi ∧ aT
c(i) x̂ = bc(i)}.

4: repeat
5: SelectP ∈ U; letPc := {c(i) : i ∈ D(x̂) \ P}.
6: ∥We consider LP( ˆx,P) and apply Bland’s least index rule.
7: E := E ∪ {i : i ∈ P ∪ Pc ∧ i < W̄}
8: repeat
9: Compute ˆy ≡ [ŷi ] i∈W := A−1g, whereA := [a j ] j∈W.

10: Computeq := min{i : i ∈ C0 ∪ C1}, where
C0 := min{i : i ∈ W0 ∧ ŷi < 0}
C1 := min{i : i ∈ W1 \ (P ∪ Pc) ∧ ŷi < 0}

11: ∥ HereW0 =W∩ {1, . . . ,m} andW1 =W∩ {m+1, . . . ,m+2p}.
12: if q , NULL then
13: ŷq < 0 is the qualified multiplier with smallest index.
14: Compute search directionsq as the column ofA−T corresponding to ˆyq.
15: if ∃r ∈ E such thataT

r sq , 0 then
16: E := E \ {r}
17: else

18: Ratio test: ˆαr := min
j<Ŵ

aT
j sq<0















b j − aT
j x̂

aT
j sq

,∞















.

19: If multiple choices ofr exist, choose the smallest one.
20: if α̂r = ∞ then
21: ∥ LP(x̂,P) is unbounded, so is the LPCC.
22: return: status := unbounded.
23: end if
24: UpdateW :=W∪ {r} \ {q}.
25: if α̂r > 0 then, ∥ cycle breaks.
26: return: status := cycle breaks.
27: end if
28: end if
29: end if
30: until q = NULL (i.e., no qualified leaving constraint).
31: ∥ x̂ is a solution to LP( ˆx,P).
32: SetR1 := {i : ŷi ≥ 0∧ i ∈ P}, R2 := {i : ŷc(i) ≥ 0∧ i ∈ D(x̂) \ P}
33: UpdateU := U \ {P ∪ S2 \ S1 : S1 ⊆ R1 ∧ S2 ⊆ R2}

34: until U = ∅.
35: return: status := B stationary.
36: end function

Algorithm 4: Anticycling for Algorithm 2.
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We can ensure (5.4) by requiring two conditions:

• At the beginning of each inner loop, we add the required constraints intoE to makeW̄ =W∪E

satisfy (5.4).

• At each pivoting step, we prevent the constraints inP ∪ Pc from leavingW.

In each inner loop of Algorithm 4, we consider LP( ˆx,P) and apply Bland’s least index rule. Therefore,
the inner loop must terminate in a finite number of iterations(Chvátal, 1983, Theorem 3.3); (Gill et al.,
1990, Theorem 8.3.1). Note, however, that we do not need Bland’s rule when moving a constraint fromE
intoW, because in each inner loop, constraints inE can leave but no constraint can enterE, and therefore it
cannot cause a cycling.

For the outer loop, the size ofU is reduced at each iteration. Therefore, the overall numberof iterations
is finite. We conclude that our anticycling scheme in Algorithm 4 must terminate with one of the following
three cases:

1. A descent search direction is found, and there is no stopping constraint, that is, ˆαr = ∞. The current
LP(x̂,P) of concern is unbounded, and so is the LPCC (2.1).

2. A descent direction is found, and we move to another vertexwith a positive step length, in which case
we go back to Algorithm 2 and continue with the next pivoting step.

Remark: Note that (4.4) may no longer hold because we augmentE. Nevertheless, (4.4) is not
required by Algorithm 2 to work properly, but it potentiallyavoids unnecessary pivoting steps. Indeed,
we can impose

E :=
{

i : i ∈ E ∧ c(i) <W∧ (i ≤ m+p∨ c(i) < E)
}

when returning to Algorithm 2, if (4.4) is desired.

3. If U = ∅ at the termination of Algorithm 4, then ˆx is a minimizer to all LP( ˆx,P) for P ∈ D(x̂), and
therefore B-stationary.

The discussion leads to the following proposition.

Proposition 5.1 Algorithm 2 must terminate in a finite number of pivoting steps, either finding a descent
direction to leave the current vertex̂x or verifying thatx̂ is B-stationary.

We are free to choose anyP ∈ U in Algorithm 4. If we carefully selectP ∈ U, the number of pivoting
steps may be reduced, as the following illustrative exampleshows. We apply Algorithm 2 to solve the LPCC
(2.9) which has only one vertex ˆx = (0, 0, 0).

The first pivoting step: Suppose we have the initial working setW = {1, 2, 3} with zero extensionE = ∅.
The corresponding multipliers ˆy ≡ [ŷ j ] j∈W = A−1g are (ŷ1, ŷ2, ŷ3) = (3

4,
1
4,−2), whereŷ3 = −2 is the only

negative multiplier, associated with constraint 3, which is complementary. The other complement, indexed
by 4, is active but not inW̄ =W∪E. Therefore the leaving constraintq is 3, and we add constraint 4 into
E, resulting inE = {4}. The search directionsq is (1, 1, 4). We move constraint 4 fromE toW immediately,
sincea4sq = 1 , 0, wherea4 = (0, 1, 0) is the gradient of constraint 4. In Algorithm 3 for cycle detection,
the updated arrays areA1 = (3) andA2 = (4).
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The second pivoting step: The working setW is now {1, 2, 4}, associated with multipliers (ˆy1, ŷ2, ŷ4) =
(1

4,
3
4,−2). With a similar discussion, the leaving and entering constraints are those indexed by 4 and 3,

respectively. At this point we detect a cycle by Algorithm 3,where the updated arrays areA1 = (3, 4) and
A2 = (4, 3), forming the same set{3, 4}. Hence, we do not pivot but instead move on to Algorithm 4 for
anticycling.

The anticycling phase: When entering Algorithm 4, we have the working setW = {1, 2, 4}. The only
complementarity condition is degenerate, soD(x̂) = {3}. We initializeU := {∅, {3}} as the power set of
D(x̂). Now we selectP to be∅ ∈ U; thenPc = {4}, andE remains empty. The only negative multiplier
associated withW = {1, 2, 4} is ŷ4 = −2. Since 4∈ P ∪ Pc, constraint 4 is treated as equality in LP( ˆx, ∅)
and cannot leaveW. Therefore, ˆx is a minimizer of LP( ˆx, ∅). The updatedU contains only one element{3}
after removing∅.

We continue with the next outer iteration of Algorithm 4. ThenextP is {3}, whose correspondingPc

is ∅. Since 3∈ P ∪ Pc is not in the working setW = {1, 2, 4}, we add it intoE and obtainE = {3}. The
only negative multiplier is ˆy4 = −2. Since now the LP piece of concern is LP( ˆx, {3}), constraint 4 is treated
as an inequality and can leave the working setW. Then the entering constraint is 3∈ E. After pivoting, we
haveW = {1, 2, 3} andE = ∅. The only negative multiplier is ˆy3 = −2. However, constraint 3 is treated as
an equality in LP( ˆx, {3}), so it cannot leave the working setW. Hence ˆx = (0, 0, 0) is also a minimizer of
LP(x̂, {3}). We conclude that ˆx = (0, 0, 0) is a B-stationary point.

Discussion: In the above illustration, we selectP to be∅ for the first inner loop of Algorithm 4. Alterna-
tively, if we chooseP to be{3}, then the setE will be augmented to be{3}. As a result, the first LP piece
requires one more pivoting step to move constraint 3 fromE toW. Careful selection ofP ⊆ U may save
more pivots for larger programs.

Now we discuss how to selectP ⊆ U in Algorithm 4. Adding constraints intoEwill potentially increase
the number of pivoting steps to move constraints fromE toW. Therefore, the key point is to constrain the
augmentation ofE. Recall that the purpose of augmentingE is to satisfy (5.4). As discussed in Section 4,
our W̄ in Algorithm 2 satisfies (4.3), so there existsP satisfying (5.4). Hence augmentation ofE is not
required for the first inner loop. A greedy method is to selecttheP ∈ U that is closest to the previous one,
denoted byP̂, for each consequent inner loop. In other words,

P := argmax{|P ∩ P̂| : P ∈ U}.

6 Obtaining an Initial LPCC Feasible Vertex

Our pivoting algorithm to solve an LPCC (2.1) requires a feasible starting vertex. Similar to the Phase I
process of the simplex method for linear programming, we propose a two-phase process for LPCC (2.1).

Our Phase I is identical to the Phase I of LP, where we find a linear feasible vertex satisfying all the
inequalities (2.3). If such a vertex is found, we continue with Phase II to resolve complementary violations
in order to satisfy (2.4). If a feasible point ˆx is found, we move on to the optimality phase, where we use ˆx
as the starting vertex to solve LPCC (2.1) by our Algorithm 2.

In Phase II we have a linearly feasible vertex ˆx from Phase I, but some of the complementarity conditions
may not be satisfied. We note that Phase I ensures thataT

i x̂ − bi ≥ 0 andaT
c(i) x̂ − bc(i) ≥ 0, which implies
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(aT
i x̂− bi)(aT

c(i) x̂− bc(i)) ≥ 0. Therefore, we partition the complementarity conditionsinto two sets ofI and
J, of those satisfied and of those not yet satisfied, respectively:

I = {i : (aT
i x̂− bi)(aT

c(i) x̂− bc(i)) = 0, i = m+1, . . . ,m+p},

J = {i : (aT
i x̂− bi)(aT

c(i) x̂− bc(i)) > 0, i = m+1, . . . ,m+p}.
(6.1)

We resolve the complementary violation one at a time, and update (6.1) at each iteration. The pseudo-
code is given in Algorithm 5.

1: ∥ Given a linearly feasible vertex ˆx of LPCC (2.1) from Phase I.
2: DetermineI andJ by (6.1).
3: SetK := ∅
4: repeat
5: Select j ∈ J \ K . Starting from ˆx, solve the following reduced LPCC:



























minimize
x

aT
j x

subject to aT
i x ≥ bi , i = 1, . . . ,m+2p,

0 ≤ (aT
i x− bi) ⊥ (aT

c(i)x− bc(i)) ≥ 0, i ∈ I.

(6.2)

6: if the minimizerx∗ of (6.2) satisfiesaT
j x∗ = b j then

7: K := ∅; x̂ := x∗; updateI andJ by (6.1).
8: else
9: Starting fromx̂, solve the LPCC:



























minimize
x

aT
c( j)x

subject to aT
i x ≥ bi , i = 1, . . . ,m+2p,

0 ≤ (aT
i x− bi) ⊥ (aT

c(i)x− bc(i)) ≥ 0, i ∈ I.

(6.3)

10: if the minimizerx∗ of (6.3) satisfiesaT
c( j)x

∗ = bc( j) then
11: K := ∅; x̂ := x∗; updateI andJ by (6.1).
12: else
13: K := K ∪ { j}
14: end if
15: end if
16: until J = ∅ orK = J.
17: ∥ If J = ∅, then the last ˆx is feasible.

Algorithm 5: Phase II to find a complementary feasible vertex of LPCC (2.1).

We note that we can solve LPCCs (6.2) and (6.3) using our LPCC pivoting scheme, because we have a
feasible starting vertex. We also note the following:

1. When updating ˆx := x∗, we also update the extended working setW̄ =W∪ E, inherited from (6.2)
or (6.3).

2. Since we have at least one more satisfied complementarity condition,I is augmented. After augmen-
tation ofI, the condition (4.3) may no longer hold. Let

F = {i : i ∈ I ∧ i < W̄ ∧ c(i) < W̄}
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be the set of complementarity conditions without complements in the extended working set̄W =

W∪E. In order to satisfy (4.3), we add some complements toE, those in

∆E = {i : i ∈ F ∧ aT
i x̂ = bi} ∪ {c(i) : i ∈ F ∧ aT

c(i) x̂ = bc(i) ∧ aT
i x̂ , bi}.

After augmentingE := E∪∆E, the resulting extended working set̄W =W∪E satisfies (4.3). Finally,
the augmentation ofE does not violate of (4.4).

In Algorithm 5, either the size ofJ is reduced after every update, or the current complementarity
condition is added toK . Therefore, Algorithm 5 must terminate in a finite number of iterations with one of
two possible outcomes:

1. J = ∅: We obtain a complementary feasible vertex ˆx. Then we continue with the optimality phase,
solving the LPCC (2.1) by our pivoting algorithm with the starting vertexx̂.

2. K = J , ∅: We are not able to resolve the complementarity violations still in J, in which case we
call the LPCC (2.1)locally infeasible.

For everyj ∈ J, we can either solve (6.3) first or solve (6.2) first. In our implementation, we project the
current vertex ˆx to the two subspaces formed byaT

j x = b j andaT
c( j)x = bc( j), respectively. We solve (6.2) or

(6.3) first depending on which projected point results in smaller objective function value.

Note: We can stop Algorithm 5 early if we reach line 13 whereK , ∅, which corresponds to a local
minimum of LPCC constraint violation. On the other hand, continuing to solve LPCCs as presented in
Algorithm 5 sometimes helps. In our experiments on 168 LPCCsin Section 7, there are three problems
where the infeasibility is resolved because of continuing after K , ∅ in line 13. These problems are
ex9.1.6-lpcc, tollmpec1-siouxfls-lpcc, andtollmpec-siouxfls-lpcc.

We illustrate our approach with the LPCC (3.4). Starting with the feasible vertex ˆx = (0, 0, 0, 1, 0)
associated with the working setW = {1, 2, 3, 5, 7} determined in Phase I, we now resolve the complementary
violation by Algorithm 5. The only complementarity condition not yet satisfied is 0≤ x4 ⊥ x1− x3+ 2 ≥ 0,
for which the LPCC program (6.2) reads as











































































minimize
x1,x2,x3,x4,x5

x4

subject to x1, x2 ≥ 0, indexed by 1,2;
x1 + 2x4 ≥ 2, indexed by 3;
x3 − x4 − x5 ≥ −2, indexed by 4;
0 ≤ x3 ⊥ x1 − x2 + x3 + 1 ≥ 0, indexed by 5 and 8;
0 ≤ x4, x1 − x3 + 2 ≥ 0, indexed by 6 and 9;
0 ≤ x5 ⊥ x3 − x4 + 1 ≥ 0, indexed by 7 and 10.

(6.4)

The multipliersŷ = [ŷ j ] j∈W = A−1g, with g = (0, 0, 0, 1, 0) the objective normal of (6.4), are (y1, y2, y3, y5, y7) =
(−1

2, 0,
1
2 , 0, 0). Therefore, the standard constraintx1 ≥ 0 associated with the only negative multiplier

ŷ1 = −
1
2 is the leaving constraint. The entering constraint determined by the ratio test (3.3) isx4 ≥ 0,

indexed by 6. So the updated working set isW = {2, 3, 5, 6, 7}, and the vertex ˆx = (2, 0, 0, 0, 0) is feasible.
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7 Numerical Experiments

We have a MATLAB implementation of our pivoting algorithm, which can handle more general forms of
linear constraints, including equality constraints, range constraints, and mixed complementarity conditions.
We compare our solver with the filter MPEC solver via the NLP reformulation (Fletcher et al., 2006) that
solves MPEC by introducing slack variablessand replacing complementarity conditionsy ⊥ sby yT s≤ 0.
Filter MPEC uses an SQP method to solve the resulting NLP. We compare the two solvers on a set of
LPCCs obtained by linearizing the MPECs from MacMPEC (Leyffer, 2000), a collection of 168 MPEC test
problems written in AMPL (Fourer et al., 2002). AMPL allows more general constraints, including range
constraints and equations. AMPL also allows mixed complementarity constraints. See Ferris et al. (1999)
for information of expressing complementarity conditionsin AMPL.

Each LPCC can be characterized by the following numbers: thenumber of variablesn, the number of
constraintsm, the number of equalitiesme, and the number of complementarity conditionsp. Appendix A
shows the characteristics of the 168 programs in MacMPEC-LPCC test set, where we have sorted the pro-
grams byn. We have removed 12 LPCCS from the test set, which are LPs after AMPL’s presolve eliminated
all complementarity constraints. These problems arebard3-lpcc, bard3m-lpcc, andgnash1 j-lpcc for
j = 0, 1, . . . , 9.

Five outcomes are possible for our pivoting algorithm: globally infeasible, locally infeasible, B-stationary,
strongly stationary, and unbounded objective. In practice, problems are expected during anticycling if we
have a large set of nonstrict complementarity conditionsD(x̂), defined in (2.5). Recall that Algorithm 4
for anticycling uses a setU to track the determination of optimality of LP pieces LP( ˆx,P) for P ⊆ D(x̂).
The setU is initialized as the power set ofD(x̂), which is of size 2|D(x̂)|. It means|D(x̂)|, the size of set
D(x̂), cannot be large in practice. We call|D(x̂)| thedegree of nonstrictnessand allow|D(x̂)| ≤ 16 in our
experiments.

Table 1: Result summary of the 168 programs in MacMPEC-LPCC test set.

Pivoting Algorithm Filter MPEC
Outcome # Programs Outcome # Programs

globally infeasible 21 linear infeasible 21
locally infeasible 2 locally infeasible 2
unbounded objective 30 unbounded objective 15
strongly stationary 111 optimal solution found 112
B-stationary 2 trust region too small 5
max degree nonstrictness reached 2 max number iterations reached 13

We implemented a one-at-a-time Phase I method to get a linearfeasible point. The results are summa-
rized in Table 1. We can see from Table 1 that the results are consistent except for the following

1. In two cases the degree of nonstrictness exceeded 16, but filter MPEC found solutions. These prob-
lems aremonteiroB-lpcc andmonteiro-lpcc.

2. In 5 cases filter MPEC stopped because the trust region was smaller than its tolerance, which we had
set as 10−6: flp4-1-lpcc, flp4-3-lpcc, incid-set2-32-lpcc, incid-set2c-32-lpcc, and
pack-rig1p-32-lpcc.
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3. In 13 cases filter MPEC was not able to solve within the maximum number of iterations, which we had
set as 1000:dempe-lpcc, design-cent-31-lpcc, design-cent-3-lpcc, liswet1-050-lpcc,
liswet1-100-lpcc, liswet1-200-lpcc, outrata34-lpcc, qpecgen-100-1-lpcc,
qpecgen-100-2-lpcc, qpecgen-100-3-lpcc, qpecgen-100-4-lpcc, qpecgen-200-1-lpcc,
andqpecgen-200-2-lpcc.

Figure 1 plots the numbers of pivoting steps in Phase I, PhaseII, and Phase III, for the 168 LPCCs. We
sorted the LPCCs by the number of variablesn. As expected, larger programs tend to take more pivoting
steps to solve. On the other hand, no phase dominated the computational cost in all cases. Detailed results
are given in Tables 2–5.
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Figure 1: Pivoting counts of our pivoting algorithm using the MacMPEC-LPCC test set.

Figure 2 shows the performance profiles (Dolan and Moré, 2002; Dolan et al., 2006) of our pivoting
algorithm and filter MPEC. In the left plot we use all 168 programs in the MacMPEC-LPCC test set. The
plot indicates that our pivoting algorithm outperforms filter MPEC significantly. We note that filter MPEC
sometimes takes orders of magnitude more pivoting steps than does our pivoting pivoting algorithm to
verify the unbounded objectives. The reason may be that filter MPEC solves nonlinear MPECs and cannot
take advantage of the possibility of unbounded linear rays.Therefore, in the right plot we remove the 30
unbounded problems. The results indicate that our pivotingalgorithm still performs better.
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Figure 2: Performance profiles (log2 scale) using the MacMPEC-LPCC test set.

8 Conclusion

We give a pivoting algorithm to solve linear programs with linear complementarity constraints. Our algo-
rithm is based on the active set method for linear programming. It works under degeneracy and includes an
anticycling scheme that can determine B-stationarity and avoid infinite loops. We also use an optimization-
based technique that consists of two phases to find an initialfeasible vertex. Phase I is to find a linear
feasible vertex, whereas Phase II is to resolve complementary violations. The experimental results indicate
that our method is an appealing alternative to existing techniques.
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A MacMPEC-LPCC Program Characteristics

Tables 2–5 list the following characteristic numbers of the168 LPCCs in the MacMPEC-LPCC test set: the
number of variablesn, the number of constraintsm, the number of equalitiesme, and the number of comple-
mentarity conditionsp. The numbers of pivots of our pivoting algorithm and filter MPEC for each LPCC
are also listed. Three error codes are used in these tables: “(d)” for the maximum degree of nonstrictness
reached, “(i)” for the maximum number of iterations reached, and “(t)” for that trust region is too small.
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Table 2: Results of the 168 programs in the MacMPEC-LPCC testset, Part I.

Program n m me p
# Pivots

Pivoting Algor. Filter MPEC

bard1-lpcc 5 9 1 3 6 8
bard1m-lpcc 6 10 1 3 5 8
bard2-lpcc 12 21 5 3 7 8
bard2m-lpcc 12 21 5 3 7 9
bar-truss-3-lpcc 35 45 28 6 10 15
bilevel1-lpcc 10 17 2 6 8 8
bilevel1m-lpcc 8 13 2 4 6 12
bilevel2-lpcc 16 29 4 8 12 20
bilevel2m-lpcc 16 29 4 8 12 20
bilevel3-lpcc 10 14 6 2 5 3
bilin-lpcc 8 15 0 6 8 165
bem-milanc30-s-lpcc 3436 4901 1968 1464 8985 1517
dempe-lpcc 3 3 1 1 2 3(i)
design-cent-1-lpcc 12 15 6 3 8 97
design-cent-21-lpcc 13 19 6 3 10 9
design-cent-2-lpcc 13 19 6 3 10 10
design-cent-31-lpcc 15 15 6 3 13 65(i)
design-cent-3-lpcc 15 15 6 3 9 63(i)
design-cent-4-lpcc 22 33 10 8 7 7
desilva-lpcc 6 8 2 2 2 0
df1-lpcc 2 2 0 1 1 0
ex9.1.1-lpcc 13 18 7 5 6 5
ex9.1.2-lpcc 8 13 5 2 4 2
ex9.1.3-lpcc 23 35 15 6 10 8
ex9.1.4-lpcc 8 13 5 2 3 3
ex9.1.5-lpcc 13 20 7 5 6 6
ex9.1.6-lpcc 14 21 7 6 9 8
ex9.1.7-lpcc 17 26 9 6 9 7
ex9.1.8-lpcc 11 17 5 3 5 4
ex9.1.9-lpcc 12 18 6 5 6 7
ex9.1.10-lpcc 11 17 5 3 5 4
ex9.2.1-lpcc 10 15 5 4 6 7
ex9.2.2-lpcc 9 14 4 3 3 6
ex9.2.3-lpcc 14 23 8 4 6 6
ex9.2.4-lpcc 8 12 5 2 4 4
ex9.2.5-lpcc 8 11 4 3 5 7
ex9.2.6-lpcc 16 22 6 6 6 4
ex9.2.7-lpcc 10 15 5 4 6 7
ex9.2.8-lpcc 6 9 3 2 3 4
ex9.2.9-lpcc 9 14 5 3 4 2
flp2-lpcc 4 5 0 2 6 8
flp4-1-lpcc 80 90 0 30 90 2829(t)
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Table 3: Results of the 168 programs in the MacMPEC-LPCC testset, Part II.

Program n m me p
# Pivots

Pivoting Algor. Filter MPEC

flp4-2-lpcc 110 170 0 60 322 211
flp4-3-lpcc 140 240 0 70 376 970(t)
flp4-4-lpcc 200 350 0 100 1081 548
gauvin-lpcc 3 4 0 2 4 5
gnash10m-lpcc 10 15 5 4 5 9
gnash11m-lpcc 10 15 5 4 5 8
gnash12m-lpcc 10 15 5 4 5 2
gnash13m-lpcc 10 15 5 4 5 2
gnash14m-lpcc 10 15 5 4 5 2
gnash15m-lpcc 10 15 5 4 6 9
gnash16m-lpcc 10 15 5 4 6 9
gnash17m-lpcc 10 15 5 4 6 4
gnash18m-lpcc 10 15 5 4 6 4
gnash19m-lpcc 10 15 5 4 6 4
hakonsen-lpcc 9 17 3 4 0 0
hs044-i-lpcc 20 30 4 10 21 23
incid-set1-8-lpcc 100 170 49 32 75 62
incid-set1-16-lpcc 371 637 225 111 292 205
incid-set1-32-lpcc 1517 2559 961 489 1492 935
incid-set1c-8-lpcc 100 177 49 32 88 78
incid-set1c-16-lpcc 371 652 225 111 435 237
incid-set1c-32-lpcc 1517 2590 961 489 1583 824
incid-set2-8-lpcc 112 177 49 44 108 975
incid-set2-16-lpcc 450 681 225 190 471 18038
incid-set2-32-lpcc 1857 2767 961 829 2532 101792(t)
incid-set2c-8-lpcc 112 184 49 44 115 742
incid-set2c-16-lpcc 450 696 225 190 493 13251
incid-set2c-32-lpcc 1857 2798 961 829 2349 28910(t)
jr1-lpcc 2 1 0 1 1 0
jr2-lpcc 2 1 0 1 1 0
kth1-lpcc 2 1 0 1 1 0
kth2-lpcc 2 1 0 1 1 1
kth3-lpcc 2 1 0 1 1 1
liswet1-050-lpcc 152 203 52 50 155 68(i)
liswet1-100-lpcc 302 403 102 100 309 140(i)
liswet1-200-lpcc 602 803 202 200 647 360(i)
monteiroB-lpcc 131 226 57 57 218(d) 298
monteiro-lpcc 131 226 57 57 165(d) 136
nash1a-lpcc 6 8 2 2 2 5
nash1b-lpcc 6 8 2 2 4 10
nash1c-lpcc 6 8 2 2 6 12
nash1d-lpcc 6 8 2 2 4 11
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Table 4: Results of the 168 programs in the MacMPEC-LPCC testset, Part III.

Program n m me p
# Pivots

Pivoting Algor. Filter MPEC

nash1e-lpcc 6 8 2 2 5 7
outrata31-lpcc 5 8 0 4 4 7
outrata32-lpcc 5 8 0 4 4 7
outrata33-lpcc 5 8 0 4 4 7
outrata34-lpcc 5 8 0 4 4 795(i)
pack-comp1-8-lpcc 107 179 49 49 1 27
pack-comp1-16-lpcc 467 753 225 225 1 143
pack-comp1-32-lpcc 1955 3101 961 961 1 624
pack-comp1c-8-lpcc 107 186 49 49 1 27
pack-comp1c-16-lpcc 467 768 225 225 1 141
pack-comp1c-32-lpcc 1955 3132 961 961 1 655
pack-comp1p-8-lpcc 107 164 49 49 84 83
pack-comp1p-16-lpcc 467 708 225 225 339 347
pack-comp1p-32-lpcc 1955 2948 961 961 1115 1049
pack-comp2-8-lpcc 107 179 49 49 1 25
pack-comp2-16-lpcc 467 753 225 225 1 161
pack-comp2-32-lpcc 1955 3101 961 961 1 262
pack-comp2c-8-lpcc 107 186 49 49 1 25
pack-comp2c-16-lpcc 467 768 225 225 1 161
pack-comp2c-32-lpcc 1955 3132 961 961 1 251
pack-comp2p-8-lpcc 107 164 49 49 86 93
pack-comp2p-16-lpcc 467 708 225 225 294 293
pack-comp2p-32-lpcc 1955 2948 961 961 1159 1003
pack-rig1-8-lpcc 70 109 46 9 47 32
pack-rig1-16-lpcc 333 511 204 82 250 185
pack-rig1-32-lpcc 1433 2171 856 505 781 186
pack-rig1c-8-lpcc 70 116 46 9 39 26
pack-rig1c-16-lpcc 333 526 204 82 253 174
pack-rig1c-32-lpcc 1433 2202 856 505 781 186
pack-rig1p-8-lpcc 92 138 49 34 83 72
pack-rig1p-16-lpcc 389 580 225 147 386 240
pack-rig1p-32-lpcc 1711 2571 961 717 2387 7443(t)
pack-rig2-8-lpcc 75 120 46 17 58 40
pack-rig2-16-lpcc 326 510 204 93 115 65
pack-rig2-32-lpcc 1580 2694 856 661 756 201
pack-rig2c-8-lpcc 75 127 46 17 61 40
pack-rig2c-16-lpcc 326 525 204 93 123 65
pack-rig2c-32-lpcc 1580 2725 856 661 765 200
pack-rig2p-8-lpcc 91 139 49 33 76 53
pack-rig2p-16-lpcc 369 565 225 127 294 166
pack-rig2p-32-lpcc 1605 2490 961 611 1536 577
pack-rig3-8-lpcc 85 139 46 28 65 42
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Table 5: Results of the 168 programs in the MacMPEC-LPCC testset, Part IV.

Program n m me p
# Pivots

Pivoting Algor. Filter MPEC

pack-rig3-16-lpcc 360 573 204 129 346 161
pack-rig3-32-lpcc 1490 2342 856 586 746 563
pack-rig3c-8-lpcc 85 146 46 28 64 35
pack-rig3c-16-lpcc 360 588 204 129 291 130
pack-rig3c-32-lpcc 1489 2371 856 585 755 317
portfl-i-1-lpcc 87 99 13 12 62 28
portfl-i-2-lpcc 87 99 13 12 59 26
portfl-i-3-lpcc 87 99 13 12 60 36
portfl-i-4-lpcc 87 99 13 12 61 28
portfl-i-6-lpcc 87 99 13 12 60 32
qpec1-lpcc 30 39 0 20 30 1
qpec2-lpcc 30 39 0 20 20 0
qpecgen-100-1-lpcc 105 202 0 100 167 7689(i)
qpecgen-100-2-lpcc 110 202 0 100 197 19385(i)
qpecgen-100-3-lpcc 110 204 0 100 604 16161(i)
qpecgen-100-4-lpcc 120 204 0 100 478 23855(i)
qpecgen-200-1-lpcc 210 404 0 200 1047 24243(i)
qpecgen-200-2-lpcc 220 404 0 200 1838 43704(i)
qpecgen-200-3-lpcc 220 408 0 200 2825 41805
qpecgen-200-4-lpcc 240 408 0 200 1022 27416
ralph1-lpcc 2 2 0 1 2 5
ralph2-lpcc 2 1 0 1 1 3
ralphmod-lpcc 104 203 0 100 136 1515
scale1-lpcc 2 1 0 1 0 2
scale2-lpcc 2 1 0 1 0 2
scale3-lpcc 2 1 0 1 0 3
scale4-lpcc 2 1 0 1 0 3
scale5-lpcc 2 1 0 1 0 3
scholtes1-lpcc 3 2 0 1 3 2
scholtes2-lpcc 3 2 0 1 4 2
scholtes3-lpcc 2 1 0 1 1 1
scholtes4-lpcc 3 4 0 1 4 6
scholtes5-lpcc 3 3 0 2 1 3
siouxfls-lpcc 2403 4703 628 1748 10800 97578
siouxfls1-lpcc 2403 4703 628 1748 11781 12225
sl1-lpcc 8 11 2 3 6 10
stackelberg1-lpcc 3 4 1 1 2 0
tap-09-lpcc 86 136 32 32 76 118
tap-15-lpcc 194 328 68 83 159 274
taxmcp-lpcc 12 24 3 10 22 134
water-net-lpcc 66 116 36 14 37 11
water-FL-lpcc 213 373 116 44 135 43
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